

r Wells, PE - Minnesota State Bridge Inspection Engineer

entation Outcomes

- derstand Benefits and Limitations
- rn current and future drone technologies that are effective follge inspection
- lerstanding of how to successfully implement drone technolo
- lerstand the costs associated with implementing drones and t
- savings that can be realized compared to traditional method
- derstand drone data needs
- lerstand how to utilize drone data into digital twins

essment of UAS Technology

nspection-specific UAS Object Sensing

Capable of looking up

ly without GPS, under bridge decks

hoto, Video and Thermal Imaging

Confined Space

ssment of UAS Technology

mercial Drones (\$20,000 -

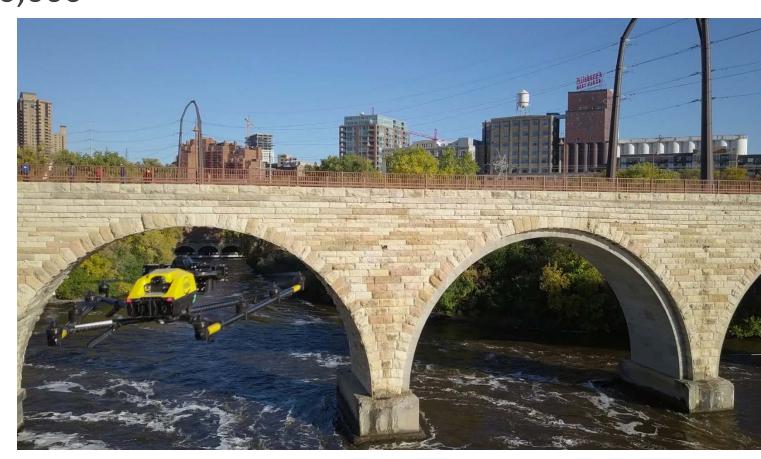
(000)

tel Falcon 8+

I Matrice 210

yability Elios

efits


nsor Size

eliability

Dual Batteries

urability

rpose Built for Inspection

ssment of UAS Technology

sumer Level Drones (\$500)

2000)

JI Mavic

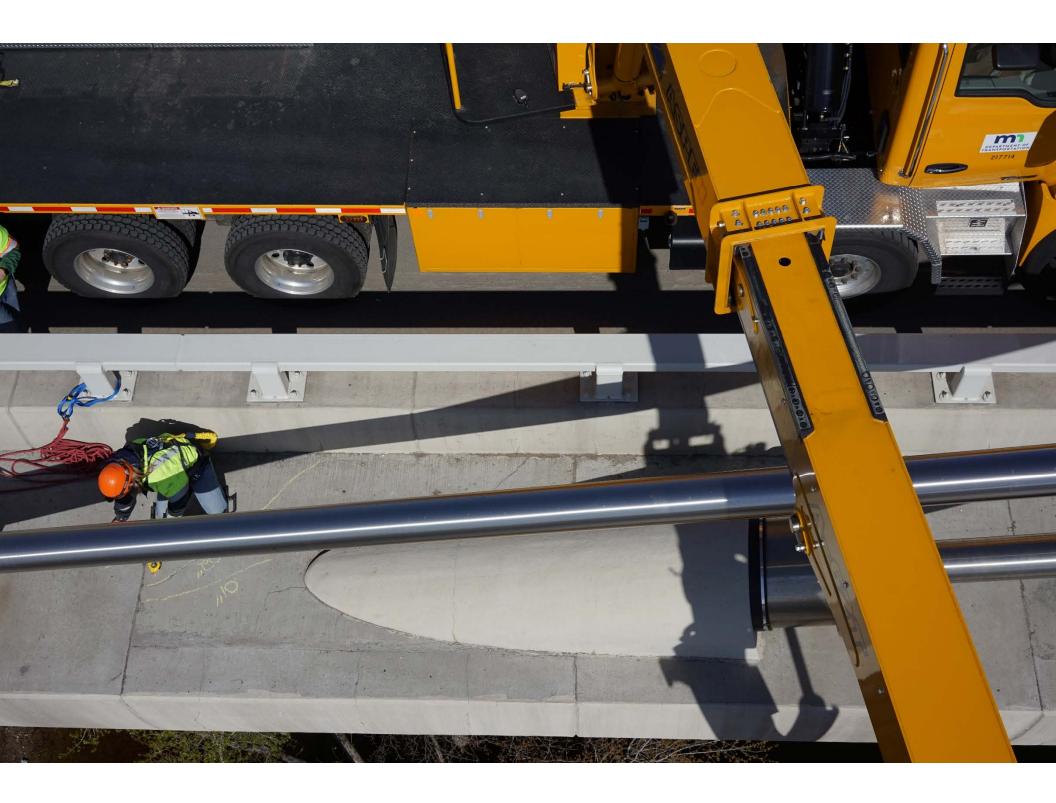
Object Avoidance

arrot Anafi

Thermal

efits

ow cost


mall size

lore risk tolerance

Limitations

- Non-professional perception
- Reliability
- Small sensor sizes
- Less sophisticated flight planning

ssment of UAS Technology

peller Aeropoints

itomatic Ground Control

ovides precision ground ntrol

ds ability to accurately olocate assets and spection results

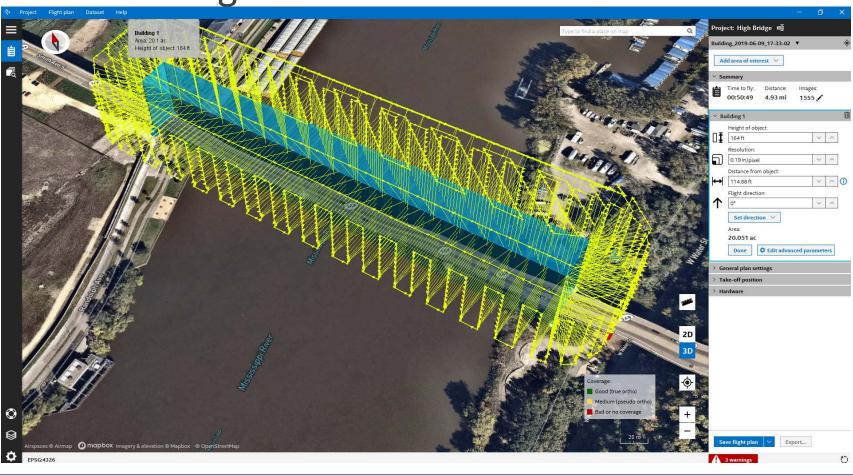

lge Inspection Goals

nspection Planning

Detect Conditions and Deficiencies

Document

Communicate



spection Planning with UAS

ht Planning

D Autonomous Flights

etection of Defects and Deficiencies

se UAS as an access tool
raditional Access Tools
Aerial Work Platforms (AWP's)
Rope Access and Structure
Climbing
Ladders

Binoculars

ocument Conditions and Deficiencies

ality Modeling Software

Pix4D

Context Capture

out

Images

Ground Control

ıtput

Orthomosaics

GeoTIFF, DSM, DTM

Point Clouds

Classified by AI

3D Mesh

CAD

ocument Conditions and Deficiencies

iverables - Orthomosaic

ommunicate Conditions and Deficiencies

aditional Reporting

BR 3459 Span #3 Field Notes					
Location	North (upstream) Truss	South (downstream) Truss			
L0-L1 Bottom Chord (4 angles, 5" x 3-1/2" x 5/16")	[2004] Bottom chord angles reinforced (bolted plates) at L0, L1 and at the center. [2008] There is pitting and section loss (painted over) just west of the center section reinforced in 1994 - the horizontal legs of the two exterior angles have rusted through. [2011] No change. [2015] Through corrosion top horizontal leg of bottom exterior angle west of retro fit. [2017] Pitting on the upper legs of the chord inside the panel point. (Photo 20)	[2008] Upper angle is bent at mid- panel. [2008] The horizontal legs of the truss bottom chord angles have pack rust (minor section loss) at L0. [2008] The vertical leg of the bottom interior angle has pack rust (section loss) along the edge of the interior L0 gusset plate. [2011] No change. [2015] Pitting 3/16" deep at L0. Through corrosion on bottom interior angle horizontal leg inside panel point L0. Pitting ¼" deep on top interior horizontal legs inside L1.			
L0-L1 Lower Lateral Bracing	[2004] Lower lateral bracing members reg [2011-2015] No deficiencies noted.	placed.			
L1 Gusset Plates (1/2" thick)	[2004] Repainted - L0/L1 & L1/L2 connections reinforced (bolted plates). [2011] No deficiencies noted. [2013-2015] 1/8" bow on EGP from PR.	[2004] Repainted. [2010] Minor corrosion. [2011] No change [2013-2015] IGP has 1/4" PR distortion over upper angle of lower chord, E side.			
L1-U1 Vertical (4 angles, 3" x 2-1/2" x 1/4")	[2008] Vertical has minor section loss at L1. [2011] No deficiencies noted. [2013] NC to section loss @ L1. [2013-2015] Paint failures over upper half of N face of both flanges. [2017] 3/16" pitting at L1N (Photo 21)	[2011] No deficiencies noted. [2015] Paint failure throughout.			

ommunicate Conditions and Deficiencies

fits

ty Improvements spectors ublic

lity Gains

Savings

enges

ning Curves

Hands On

eptance

es and Regulations

Storage

ety Analysis

emove inspectors from harms way

Heights

Traffic

educed traffic control improves safety for inspectors and publ

undreds of Inspection Flights with no incidents or close calls

ork zone accident occurs every 5.4 minutes in the United Sta

2014 669 Fatalities in Work Zones

AS are a way to remove personnel from the ROW

AA is focused on airspace safety but need to look at overall ris

t Savings

st Savings up to %

ost cost savings ere traffic ntrol and cess equipment

cess equipment n be reduced or minated.

	Traditional	UAS Assisted		Savir
Structure	Inspection Cost	Inspection Cost	Savings +/-	Percen
19538	\$1,080	\$1,860	-780	-729
4175	\$15,980	\$13,160	2,820	189
27004	\$6,080	\$4,340	1740	29%
27201	\$2,160	\$1,620	540	25%
MDTA Bridges	\$40,800	\$19,800	21000	519
2440	\$2,160	\$1,320	840	39%
27831	\$2,580	\$540	2040	79%
82045	\$2,660	\$1,920	740	289
92080	\$2,580	\$1,350	1230	489
92090	\$2,410	\$1,570	840	35%
62504	\$3,660	\$1,020	2640	729
82502	\$3,240	\$2,400	840	26%

Average Savings

409

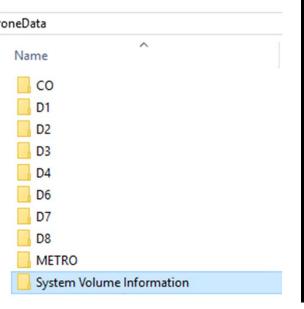
lge Candidates

orks Well

Large Bridges

Bridge in open areas

Bridges that depend on traffic control and UBIV's for inspection


oes not Work Well

Bridges over high ADT roadways

Bridges in heavily wooded areas

a Storage

per Computer per Storage curity

Digital Twins

crosoft HoloLens

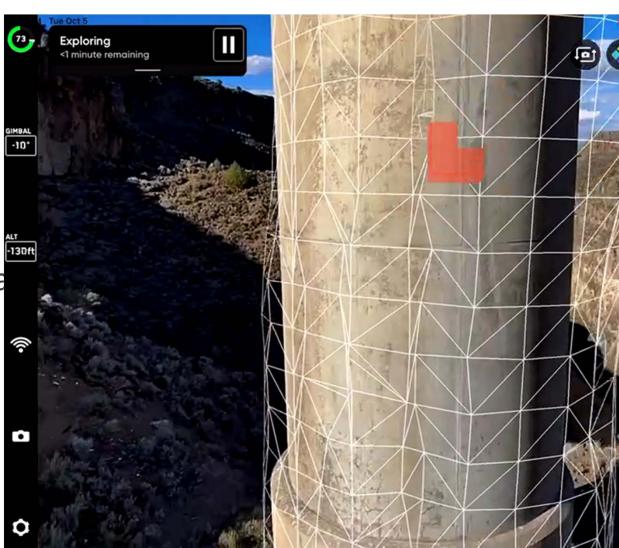
averse

tual space where we isit, meet and borate

ered around a digital

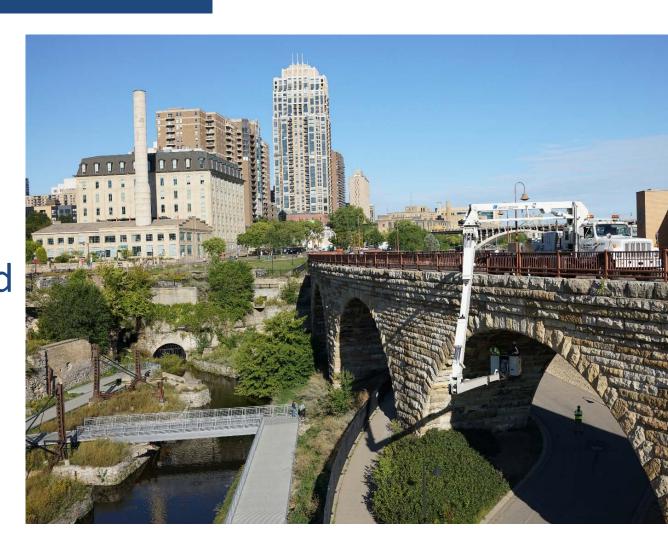
measure, annotate hare

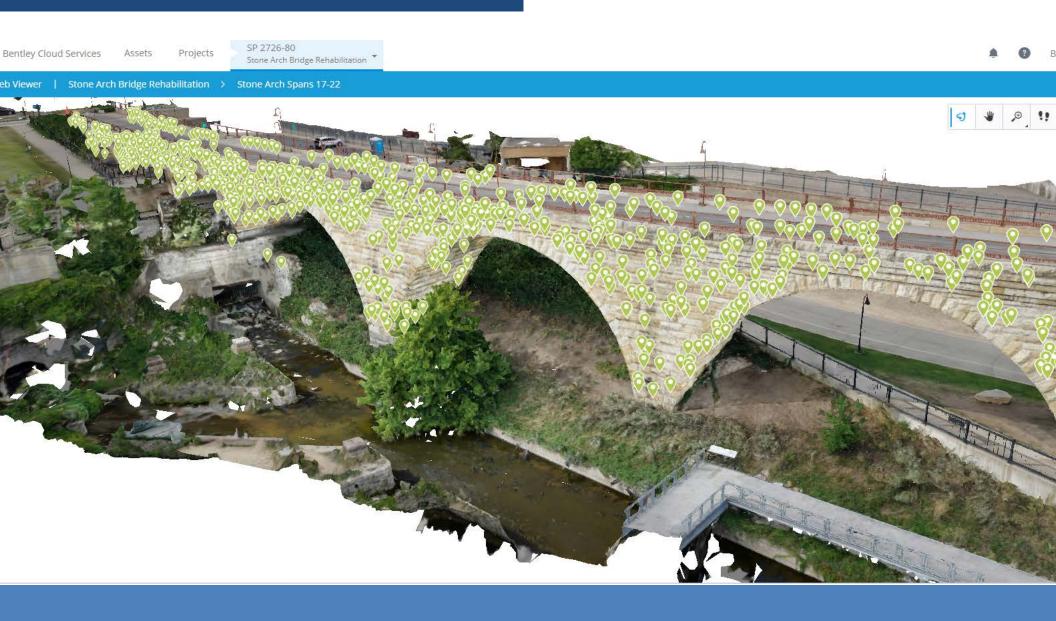
orm virtual inspections


e for design and load

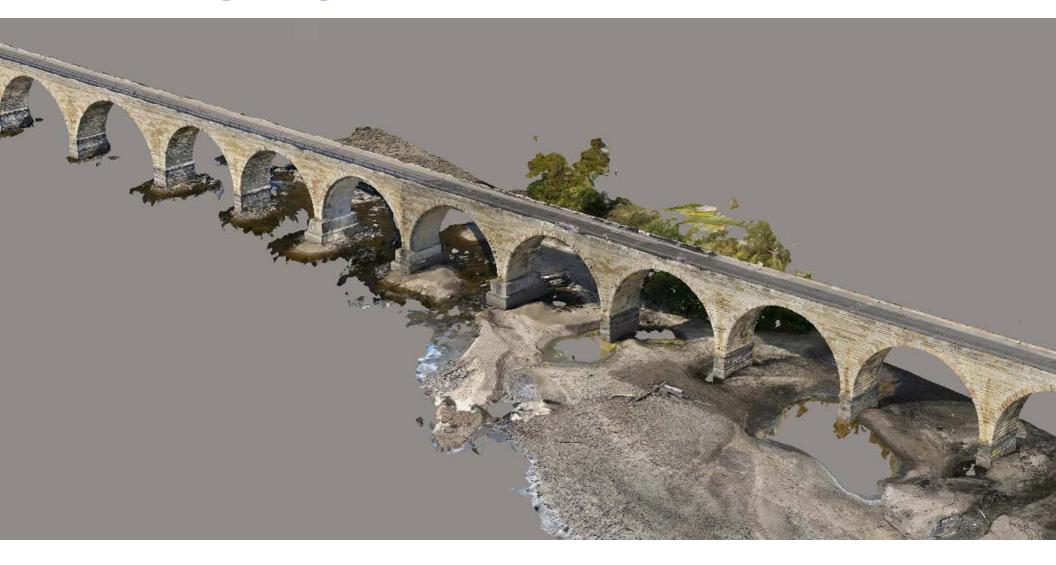
r Data Collection

es collect data orders of nitude faster than humans es utilize sensors and input GPS, Inertial Measurement (IMU), compass, cameras, sonic to fly with only directional from pilot

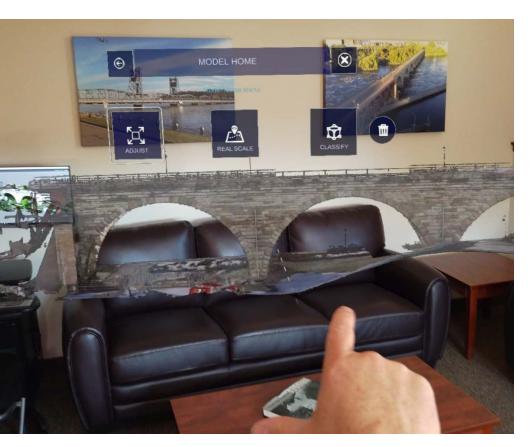

es and robots can now collect data almost entirely nomously

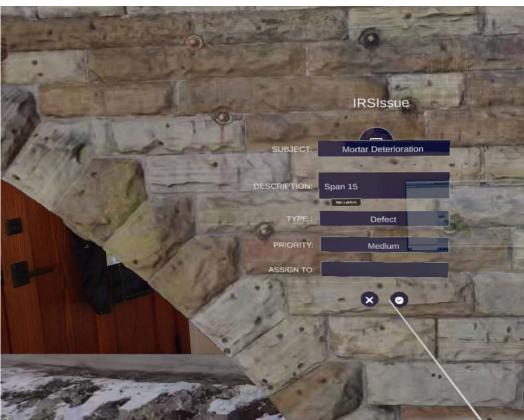

e Rehabilitation UAS Workflow

AS Field Data Capture gital Twin Creation eld Inspection habilitation Design and ans


nstruction

y Model with Field Notes




e Arch Bridge Digital Twin

ed Reality Inspections

Arch Bridge Digital Twin Benefits

roved Data Quality

uced Risk for Designers

uced Risk for Contractors

er Collaboration/Inclusion

ety Improvements

a Increase

gabytes tal Twin Bridge Inspection ort 2 Terabytes

clusions

- now your intended purpose for the drone "off-the-shelf" UA as limited inspection capabilities
- sing UAS for access is important but documentation and ommunication of results is more compelling
- AS can supplement inspections as a tool
- oes not need to replace entire inspection
- ollaborate with other owners to share knowledge and promot Iture advancement
- now where to store data and how to utilize it effectively

litional Information

se III Report Published

o://www.dot.state.mn.us/research/reports/2018/201

ise IV Report Published

os://www.dot.state.mn.us/research/reports/2021/20 .3.pdf

DOT Office of Aeronautics Policy/Info

o://www.dot.state.mn.us/aero/drones/index.html

Search MnDOT A to Z General Contacts

Research Projects

We put your ideas in motion

Search
Projects:
Browse by:
Year
Category
Researcher(s)
Re

Home About News Publications Projects RFP/Contracts Resources Contact

Status: Complete Report Date: 08/02/2018

Summary:

MnDOT completed a small research project in 2015 to study the effectiveness of UAS technology applied to bridge safety

inspections. The project team inspected four bridges at various locations throughout Minnesota and evaluated the UAS' effectiveness in improving inspection quality and inspector safety based on field results. A second research effort demonstrated UAS imaging on the Blatnik Bridge and investigated UAS use for infrared deck surveys. Additionally, a best practices document was created to identify bridges that are best suited for UAS inspection. It is the goal, based on this research, to implement a statewide UAS bridge inspection plan, which will identify overall cost effectiveness, improvements in quality and safety, and future funding sources for both state and local bridges. The project investigator will also investigate a collision tolerant drone for confined space inspections.

Project Personnel:

Principal Investigator: Barritt

Technical Liaison: Jennifer Wells

Final Report:

Report #2018-28

Related Materials:

- City Lab (Atlantic)
 (Video/Webinar)
- Unmanned Aircraft Systems (UAS) Metro District
 Bridge Inspection Implementation (Related Research)
- New Project: Phase 3 of Drone Bridge Inspection Research Focuses on Confined Spaces - (Article/Blog Post)
- Phase 2 Sturty: Phase Two of Drone/Unmanned Aerial

nifer L. Wells, P.E.

Inspection Engineer
DOT Bridge Office
Hadley Avenue North
ale, MN 55128-3307
one: 651-366-4573
er.Wells@state.mn.us

QUESTIONS?