Reducing Roadway Departure Crashes

Day 3

Ron W. Eck, P.E. West Virginia LTAP Ronald.Eck@mail.wvu.edu

Agenda

- Part 1 Introduction and Overview
- Part 2 Implementation Approaches
- Part 3 Keeping Vehicles on the Road: Signing and Delineation (continued)
- Part 4 Keeping Vehicles on the Road: Pavement and Geometric (continued)
- Part 5 Improve the Recovery Area
- Part 6 Minimize Severity of Crashes

Part 5

Improve the Recovery Area

Part 5 Learning Outcome

Describe countermeasures to reduce potential for vehicles to crash if they leave the roadway.

Shoulder Widening

- Shoulders are where recovery begins
- Shoulders most critical on horizontal curves

Risk Factors Associated with Pavement Edge Drop-Off Crashes

- Speed
- Driver Experience
- Vehicle/Tires
- Drop-Off Height
- Shape of Pavement Edge

Another Benefit--Increased Edge Compaction

With Safety Edge

Without Safety Edge

Benefits of A Safety Edge

- Immediate and long-term mitigation to drop-offs by helping vehicles maintain stability, particularly on roadway re-entry
- Reduce tort liability
- Cost less than 3% of material costs
- Increased pavement edged durability

Durability

Completed Safety Edge Project

8 Years After Construction

Project constructed July 2003 Photos taken June 2011

Safety Benefits of Safety Edge

- Consolidating pavement edge into 30° shape during paving to provide stability for vehicles recovering from a roadway departure
- CMF = 0.94 for total crashes
- B/C range: 4 to 63

Design Safer Slopes and Ditches to **Prevent Rollovers**

• 15.1 B - Minimize the likelihood of crashing into an object or overturning if the vehicle travels off the shoulder

Steepness Categories of Slopes

• Recoverable - 4:1 or Flatter **

• Non-Recoverable: 3:1 to 4:1 **

• Critical: Steeper than 3:1

**Traversable

Effect of Flattening Slopes on Crashes

Table 13-18. Potential Crash Effects on Total Crashes of Flattening Sideslopes (15)

Treatment	Setting (Road Type)	Traffic Volume	Crash Type (Severity)			CMF		
				Sideslope	Sideslope in After Condition			
				in Before Condition	1V:4H	1V:5H	1V:6H	1V:7H
Flatten Sideslopes	Rural (Two-lane road)		All types (Unspecified)	1V:2H	0.94	0.91	0.88	0.85
		Unspecified		1V:3H	0.95	0.92	0.89	0.85
				1V:4H		0.97	0.93	0.89
				1V:5H			0.97	0.92
				1V:6H				0.95

NOTE: Standard error of the CMF is unknown.

Remove/Relocate Objects in Hazardous Locations

15.1 B – Minimize the likelihood of crashing into an object or overturning if the vehicle travels off the shoulder.

Clear Zone

The unobstructed, traversable area provided beyond the edge of the through traveled way for the recovery of errant vehicles.

Clear Zone

- As a result, a 30-ft clear zone was adopted by AASHTO
- In the 1970's, the 30 feet was adjusted to reflect speed, side slope and ADT

Remember

AASHTO guidance is based on assumption that 20% of vehicles will exceed the clear zone

Clear Zone Adjustment for Horizontal Curves

Redius, m [ft]	Design Speed km/h (mph)						
redius, in [rt]	60 [40]	70 [45]	80 [50]	90 (55)	100 [66]	110 [70]	
900 [2,950]	1.1	1.1	1.1	1.2	1.2	1.2	
700 [2,300]	1.1	1.1	1.2	1.2	1.2	1.3	
600 [1,970]	1.1	1.2	1.2	1.2	1.3	1,4	
500 [1,640]	1.1	1.2	1.2	1.3	1.3	1,4	
450 [1,475]	1.2	1.2	1.3	1.3	1,4	1.5	
400 [1,315]	1.2	1.2	1.3	1.3	1,4	-	
350 [1,150]	1.2	1.2	1.3	1.4	1.5	-	
300 [985]	1.2-	1.3	1.4	1.5	1.5	-	
250 [820]	1.3	1.3	1,4	1.5	-	_	
200 [660]	1.3	1.4	1.5	-	-	-	
150 (495)	1,4	1.5	-	-	-	-	
100 [330]	1.5	_		_	_	_	

Emphasis Area 16.1 Crashes with Trees in Hazardous Locations

- 16.1A Prevent trees from growing in hazardous locations
- 16.1B Eliminate the hazardous condition and/or reduce severity of the crash

16.1A—Prevent Trees from Growing in Hazardous Locations

- A1. Develop, revise and implement planting guidelines to prevent placing trees in hazardous locations.
- A2. Mowing and vegetation control guidelines

- 16.1B—Eliminate the Hazardous Condition and/or Reduce Severity of Crash
- B1. Remove trees in hazardous locations
- B2. Shield motorists from striking trees
- B3. Modify clear zone in vicinity of trees
- B4. Delineate trees in hazardous locations

Avoid Placing Trees in Hazardous Locations

Remove Trees in Hazardous Locations

Focus on trees that are:

- Close to traveled way
- Outside of curves

Don't Forget the Stumps

How Do You Address Corridors with Dense Trees That Are Close to Traveled Way?

Percent Reduction for Relocation of Roadside Hazards

• NCHRP 440 – Accident Mitigation Guide for Congested Rural Two-Lane Highways

∆ Distance	Trees	Mailbox, signs,	Guiderail	Fences
3′	22%	14%	36%	20%
5′	34%	23%	53%	30%
8′	49%	34%	70%	44%
10'	57%			

Shield Motorists from Striking Trees

Emphasis Area 16.2 Collisions Involving Utility Poles

 Objectives address treating specific poles, preventing placement of poles in high-risk locations and treating poles along a corridor

Alternative Safety Treatments For Utility Poles

- Place Utility Lines Underground
- Increase Lateral Offset
- Relocate to Less Vulnerable Location
- Increase Pole Spacing
- Multiple Pole Use
- Breakaway Design

Countermeasures for Utility Poles

• Locate pole behind guardrail!

Delineate Roadside Objects

Part 5 Learning Outcome

Describe countermeasures to reduce potential for vehicles to crash if they leave the roadway.

Exercise: Countermeasures for Roadside Hazards

- What countermeasures have you learned about today that you could apply to this location? Poll
- What crash reduction might we expect from each?

Note: The area on the right is part of the Franklin D. Roosevelt home/ Presidential Library (National Park Service) in Hyde Park, NY.

Emphasis Area 15.1—Addressing Run-Off Road Collisions

- 15.1C Reduce the severity of the crash
 - -- C1. Improve design of roadside hardware (e.g., light poles and signs)
 - -- C2. Improve design and application of barriers and attenuation systems

Roadside Design Strategies

- 1. Remove the obstacle
- 2. Redesign the object for safe traversal
- 3. Relocate the obstacle further from the road
- 4. Reduce obstacle severity (make breakaway)
- 5. Shield the obstacle
- 6. <u>Delineat</u>e the obstacle

Remove the Hazard

Make Traversable

Traversable?

- Single pipes up to 36", cut to match the sideslope.
- 30" between pipes on sideslopes up to 3:1.

Strategy 4: Breakaway Supports

• Reduce severity by providing breakaway hardware
-- sign supports
-- luminaire supports
-- utility poles

Strategy 4: Breakaway Supports

• MUTCD requires crashworthy sign supports on all public roads (Section 2A-19)

Crashworthy Support?

Sign Support Design

- Breakaway mechanism (base-bending, fracture or slip base)
- Hinge
- Stub height

Replace/Relocate Non-Crashworthy Sign Supports

- Sign supports are required to be crashworthy
- Acceptable sign supports for small signs from ITE Traffic Control Devices Handbook

Hardware Testing

- NCHRP Report 350 was adopted by FHWA in 1993
- Currently use AASHTO Manual for Assessing Safety Hardware (2016)

Example of MASH Test Matrix for Traffic Barrier Systems

Test Level	Test Vehicle	Test Conditions				
	Designation and Type	Vehicle Weight kg [lb]	Speed km/h [mph]	Angle Degree		
1	1100C (Passenger Car)	1,100 [2,420]	50 [31]	25		
	2270P (Pickup Truck)	2,270 [5,000]	50 [31]	25		
2	1100C (Passenger Car)	1,100 [2,420]	70 [44]	. 25		
	2270P (Pickup Truck)	2,270 [5,000]	70 [44]	25		
3	1100C (Passenger Car)	1,100 [2,420]	100 [62]	25		
	2270P (Pickup Truck)	2,270 [5,000]	100 [62]	25		
4	1100C (Passenger Csr)	1,100 [2,420]	100 [62]	25		
	2270P (Pickup Truck)	2,270 [5,000]	100 [62]	25		
	10000S (Single Unit Truck)	10,000 [22,000]	90 [56]	15		
5	1100C (Passenger Car)	1,100 [2,420]	100 [62]	25		
	2270P (Pickup Truck)	2,270 [5,000]	100 [62]	25		
	36000V (Tractor/Van Trailer)	36,000 [79,300]	80 [50]	15		
6	1100C (Passenger Car)	1,100 [2,420]	100 [62]	25		
	2270P (Pickup Truck)	2,270 [6,000]	100 [62]	25		
	36000T (Tractor/Tanker Trailer)	36,000 [79,300]	80 [50]	15		

Test Vehicle Designation

- New vehicle is a 2270P Quadcab Pickup (5000 lbs)
- Quadcab Pickup has a higher center of gravity and more closely resembles the large SUV's

Shield Obstacles

- New Barrier for
 - -- Slopes
 - -- Fixed Objects
 - -- Median Barrier
- Upgrading existing hardware
- **Remember, barriers themselves are roadside obstacles

Barrier Evaluation Criteria

- Structural adequacy of the tested feature
- Occupant risk
- Vehicle trajectory after impact

Barrier Classification

Barrier Installation/Maintenance Issues

- Barrier-to-Hazard Distance
- Curbs
- Terminals
- Mounting Height
- Post Support
- Barrier to Barrier Transitions

Barrier-to-Hazard Distance

• What do you think?

Guardrail and Curbs What Do You Think?

Lack of Proper Post Support

Guardrail Maintenance

- Check hardware periodically

 - Bolt torque and cable tension

 - Crash damage
 - Corrosion or rotObsolete rail
- · Check height

Barrier-to-Barrier Transitions

Gradually Increase Stiffness

TL-2 W-Beam Transition

- NCHRP 350
- W6X9 posts
- Additional posts are added at half the spacing
- Nested W-Beam

TL-3 MGS Thrie-Beam Transition

- Additional posts are added at half the spacing
- Larger and longer posts
- Thrie-beam rail is nested
- Non-Symmetrical Thrie-Beam to W-Beam

Update/Replace Roadside Hardware

Mailboxes—Chapter 11, RDG

 Sensitive issue since postal patrons may view their mailboxes as an extension of themselves and part of their domain.

What Do You Think?

What Do You Think?

Mailboxes (cont'd)

 Mailboxes supported by structures such as masonry columns, railroad ties, tractor wheels, plow blades and the like can turn a single mailbox installation into a roadside hazard.

General Guidelines and Principles

- Typical light-weight sheet metal mailboxes mounted on 4"x 4" wood post or 1½" dia. light-gage pipe is not a serious threat to motorists.
- Improvements to strengthen typical post-to-box mounting details would further reduce threat
- Agencies should adopt regulations for design and placement of mailboxes within public ROW

Part 6 Learning Outcome

Describe the <u>basics</u> of countermeasures to minimize the severity of roadway departure crashes.

Exercise 1--Urban 2-Lane Road

- Speed limit: 35 mph ADT: 4,500 vpd
- No shoulder
- One streetlight
- Vertical drop to the I&M Canal is 9 feet
- Normal cross slope for outside lane

Collision Information

- 6 Run-Off-The-Road Crashes in 3 years -
- -- 1 daytime
- -- 5 night
- -- 2 involved vehicles in the canal

What Are Your Ideas to Improve Safety on This Section of Road?

Exercise 2: Rural Two-Lane Road Exercise

- Analyze available information
- Define problem or contributing factors
- Identify appropriate countermeasures

Condition Diagram Posted Speed Limit = 35 mph Turf Shoulders of Variable Width 6 % Superelevation Radius = 110'

Collision Diagram 3 Years Crash Data 4 Run-off-road 1 overturned 1 went into creek 2 struck utility pole 1 Sideswipe Opposite 1 Head-on

Your Task

- Identify any crash patterns
- If there are patterns, what are the underlying causes/contributing factors
- Identify appropriate countermeasures to address any problems

